Multiple sclerosis and rheumatoid arthritis are examples of this type of immune imbalance

1. Kurtzke JF, Page WF, Murphy FM, Norman JE., Jr. Epidemiology of multiple sclerosis in US veterans. 4. Age at onset. Neuroepidemiology. 1992;11(4–6):226–235. [PubMed] [Google Scholar]

2. Sadovnick AD, Baird PA. Sex ratio in offspring of patients with multiple sclerosis. The New England Journal of Medicine. 1982;306(18):1114–1115. [PubMed] [Google Scholar]

3. Wallin MT, Page WF, Kurtzke JF. Multiple sclerosis in US veterans of the vietnam era and later military service: race, sex, and geography. Annals of Neurology. 2004;55(1):65–71. [PubMed] [Google Scholar]

4. Orton SM, Herrera BM, Yee IM, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurology. 2006;5(11):932–936. [PubMed] [Google Scholar]

5. Ramagopalan SV, Yee IM, Dyment DA, et al. Parent-of-origin effect in multiple sclerosis: observations from interracial matings. Neurology. 2009;73(8):602–605. [PMC free article] [PubMed] [Google Scholar]

6. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. The New England Journal of Medicine. 2000;343(13):938–952. [PubMed] [Google Scholar]

7. Lassmann H. Acute disseminated encephalomyelitis and multiple sclerosis. Brain. 2010;133(2):317–319. [PubMed] [Google Scholar]

8. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Annals of Neurology. 2001;50(1):121–127. [PubMed] [Google Scholar]

9. Lucchinetti C, Bruck W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Annals of Neurology. 2000;47(6):707–717. [PubMed] [Google Scholar]

10. Frohman EM, Racke MK, Raine CS. Medical progress: multiple sclerosis—the plaque and its pathogenesis. The New England Journal of Medicine. 2006;354(9):942–955. [PubMed] [Google Scholar]

11. Lassmann H, Brück W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends in Molecular Medicine. 2001;7(3):115–121. [PubMed] [Google Scholar]

12. Wekerle H. Immune pathogenesis of multiple sclerosis. Neurological Sciences. 2005;26(supplement 1):S1–S2. [PubMed] [Google Scholar]

13. Kabat EA, Moore DH, Landow H. An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. The Journal of Clinical Investigation. 1942;21(5):571–577. [PMC free article] [PubMed] [Google Scholar]

14. Rodriguez M. Have we finally identified an autoimmune demyelinating disease? Annals of Neurology. 2009;66(5):572–573. [PubMed] [Google Scholar]

15. Saeki Y, Mima T, Sakoda S, et al. Transfer of multiple sclerosis into severe combined immunodeficiency mice by mononuclear cells from cerebrospinal fluid of the patients. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(13):6157–6161. [PMC free article] [PubMed] [Google Scholar]

16. Hao Q, Saida T, Nishimura M, Ozawa K, Saida K. Failure to transfer multiple sclerosis into severe combined immunodeficiency mice by mononuclear cells from CSF of patients. Neurology. 1994;44(1):163–165. [PubMed] [Google Scholar]

17. Lo R, Feasby TE. Multiple sclerosis and autoimmune diseases. Neurology. 1983;33(1):97–98. [PubMed] [Google Scholar]

18. Warren S, Warren KG. Multiple sclerosis and associated diseases: a relationship to diabetes mellitus. Canadian Journal of Neurological Sciences. 1981;8(1):35–39. [PubMed] [Google Scholar]

19. Wynn DR, Rodriguez M, O’Fallon WM, Kurland LT. A reappraisal of the epidemiology of multiple sclerosis in Olmsted County, Minnesota. Neurology. 1990;40(5):780–786. [PubMed] [Google Scholar]

20. Pittock SJ, Lennon VA, de Seze J, et al. Neuromyelitis optica and non-organ-specific autoimmunity. Archives of Neurology. 2008;65(1):78–83. [PubMed] [Google Scholar]

21. Wingerchuk DM. Evidence for humoral autoimmunity in neuromyelitis optica. Neurological Research. 2006;28(3):348–353. [PubMed] [Google Scholar]

22. Qin Y, Duquette P, Zhang Y, Talbot P, Poole R, Antel J. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. Journal of Clinical Investigation. 1998;102(5):1045–1050. [PMC free article] [PubMed] [Google Scholar]

23. Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Annals of Neurology. 2004;55(4):458–468. [PubMed] [Google Scholar]

24. Barnett MH, Parratt JDE, Cho ES, Prineas JW. Immunoglobulins and complement in postmortem multiple sclerosis tissue. Annals of Neurology. 2009;65(1):32–46. [PubMed] [Google Scholar]

25. Breij ECW, Brink BP, Veerhuis R, et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Annals of Neurology. 2008;63(1):16–25. [PubMed] [Google Scholar]

26. Barnett MH, Sutton I. The pathology of multiple sclerosis: a paradigm shift. Current Opinion in Neurology. 2006;19(3):242–247. [PubMed] [Google Scholar]

27. Rodriguez M, Karnes WE, Bartleson JD, Pineda AA. Plasmapheresis in acute episodes of fulminant CNS inflammatory demyelination. Neurology. 1993;43(6):1100–1104. [PubMed] [Google Scholar]

28. Weinshenker BG, O'Brien PC, Petterson TM, et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Journal of Clinical Apheresis. 1999;46(6):878–886. [PubMed] [Google Scholar]

29. Keegan M, König F, McClelland R, et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. The Lancet. 2005;366(9485):579–582. [PubMed] [Google Scholar]

30. Cross AH, Wu GF. Multiple sclerosis: oligoclonal bands still yield clues about multiple sclerosis. Nature Reviews Neurology. 2010;6(11):588–589. [PubMed] [Google Scholar]

31. Paolino E, Fainardi E, Ruppi P, et al. A prospective study on the predictive value of CSF oligoclonal bands and MRI in acute isolated neurological syndromes for subsequent progression to multiple sclerosis. Journal of Neurology Neurosurgery and Psychiatry. 1996;60(5):572–575. [PMC free article] [PubMed] [Google Scholar]

32. Amato MP, Ponziani G. A prospective study on the prognosis of multiple sclerosis. Neurological Sciences. 2000;21(4, supplement 2):S831–S838. [PubMed] [Google Scholar]

33. Joseph FG, Hirst CL, Pickersgill TP, Ben-Shlomo Y, Robertson NP, Scolding NJ. CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients. Journal of Neurology, Neurosurgery and Psychiatry. 2009;80(3):292–296. [PubMed] [Google Scholar]

34. Mattson DH, Roos RP, Arnason BG. Isoelectric focusing of IgG eluted from multiple sclerosis and subacute sclerosing panencephalitis brains. Nature. 1980;287(5780):335–337. [PubMed] [Google Scholar]

35. Mattson DH, Roos RP, Arnason BGW. Oligoclonal IgG in multiple sclerosis and subacute sclerosing panencephalitis brains. Journal of Neuroimmunology. 1982;2(3-4):261–276. [PubMed] [Google Scholar]

36. Whitacre CC, Mattson DH, Paterson PY, et al. Cerebrospinal fluid and serum oligoclonal IgG bands in rabbits with experiment allergic encephalomyelitis. Neurochemical Research. 1981;6(1):87–96. [PubMed] [Google Scholar]

37. Walsh MJ, Tourtellotte WW. Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. Journal of Experimental Medicine. 1986;163(1):41–53. [PMC free article] [PubMed] [Google Scholar]

38. Schmidt S, Haase CG, Bezman L, et al. Serum autoantibody responses to myelin oligodendrocyte glycoprotein and myelin basic protein in X-linked adrenoleukodystrophy and multiple sclerosis. Journal of Neuroimmunology. 2001;119(1):88–94. [PubMed] [Google Scholar]

39. Karni A, Bakimer-Kleiner R, Abramsky O, Ben-Nun A. Elevated levels of antibody to myelin oligodendrocyte glycoprotein is not specific for patients with multiple sclerosis. Archives of Neurology. 1999;56(3):311–315. [PubMed] [Google Scholar]

40. Arnon R, Crisp E, Kelley R, et al. Anti-ganglioside antibodies in multiple sclerosis. Journal of the Neurological Sciences. 1980;46(2):179–186. [PubMed] [Google Scholar]

41. Endo T, Scott DD, Stewart SS, Kundu SK, Marcus DM. Antibodies to glycosphingolipids in patients with multiple sclerosis and SLE. The Journal of Immunology. 1984;132:1793–1797. [PubMed] [Google Scholar]

42. Freedman MS, Laks J, Dotan N, Altstock RT, Dukler A, Sindic CJM. Anti-α-glucose-based glycan IgM antibodies predict relapse activity in multiple sclerosis after the first neurological event. Multiple Sclerosis. 2009;15(4):422–430. [PMC free article] [PubMed] [Google Scholar]

43. Schwarz M, Spector L, Gortler M, et al. Serum anti-Glc(α1,4)Glc(α) antibodies as a biomarker for relapsing-remitting multiple sclerosis. Journal of the Neurological Sciences. 2006;244(1-2):59–68. [PubMed] [Google Scholar]

44. Sriram S, Steiner I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Annals of Neurology. 2005;58(6):939–945. [PubMed] [Google Scholar]

45. Costantino CM, Baecher-Allan C, Hafler DA. Multiple sclerosis and regulatory T cells. Journal of Clinical Immunology. 2008;28(6):697–706. [PMC free article] [PubMed] [Google Scholar]

46. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3 + regulatory T cells in the human immune system. Nature Reviews Immunology. 2010;10(7):490–500. [PubMed] [Google Scholar]

47. Huan J, Culbertson N, Spencer L, et al. Decreased FOXP3 levels in multiple sclerosis patients. Journal of Neuroscience Research. 2005;81(1):45–52. [PubMed] [Google Scholar]

48. Cvetanovich GL, Hafler DA. Human regulatory T cells in autoimmune diseases. Current Opinion in Immunology. 2010;22(6):753–760. [PMC free article] [PubMed] [Google Scholar]

49. Dejaco C, Duftner C, Grubeck-Loebenstein B, Schirmer M. Imbalance of regulatory T cells in human autoimmune diseases. Immunology. 2006;117(3):289–300. [PMC free article] [PubMed] [Google Scholar]

50. Torgerson TR. Regulatory T cells in human autoimmune diseases. Springer Seminars in Immunopathology. 2006;28(1):63–76. [PubMed] [Google Scholar]

51. Lovett-Racke AE, Yang Y, Racke MK. Th2 versus Th27: are T cell cytokines relevant in multiple sclerosis? Biochimica et Biophysica Acta. 2011;1812(2):246–251. [PMC free article] [PubMed] [Google Scholar]

52. Wucherpfennig KW, Ota K, Endo N, et al. Shared human T cell receptor V(β) usage to immunodominant regions of myelin basic protein. Science. 1990;248(4958):1016–1019. [PubMed] [Google Scholar]

53. Hafler DA, Saadeh MG, Kuchroo VK, Milford E, Steinman L. TCR usage in human and experimental demyelinating disease. Immunology Today. 1996;17(4):152–159. [PubMed] [Google Scholar]

54. Burns J, Rosenzweig A, Zweiman B, Lisak RP. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cellular Immunology. 1983;81(2):435–440. [PubMed] [Google Scholar]

55. McLaurin J, Hafler DA, Antel JP. Reactivity of normal T-cell lines to MBP isolated from normal and multiple sclerosis white matter. Journal of the Neurological Sciences. 1995;128(2):205–211. [PubMed] [Google Scholar]

56. Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. The EMBO Journal. 2005;24(17):2968–2979. [PMC free article] [PubMed] [Google Scholar]

57. Brinkman CJ, Nillesen WM, Hommes OR, Lamers KJ, de Pauw BE, Delmotte P. Cell-mediated immunity in multiple sclerosis as determined by sensitivity of different lymphocyte populations to various brain tissue antigens. Annals of Neurology. 1982;11(5):450–455. [PubMed] [Google Scholar]

58. Wucherpfennig KW, Hafler DA, Strominger JL. Structure of human T-cell receptors specific for an immunodominant myelin basic protein peptide: positioning of T-cell receptors on HLA-DR2/peptide complexes. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(19):8896–8900. [PMC free article] [PubMed] [Google Scholar]

59. Severson C, Hafler DA. T-cells in multiple sclerosis. Results and Problems in Cell Differentiation. 2010;51:75–98. [PubMed] [Google Scholar]

60. Kebir H, Ifergan I, Alvarez JI, et al. Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis. Annals of Neurology. 2009;66(3):390–402. [PubMed] [Google Scholar]

61. Sinha S, Subramanian S, Proctor TM, et al. A promising therapeutic approach for multiple sclerosis: recombinant T-cell receptor ligands modulate experimental autoimmune encephalomyelitis by reducing interleukin-17 production and inhibiting migration of encephalitogenic cells into the CNS. Journal of Neuroscience. 2007;27(46):12531–12539. [PMC free article] [PubMed] [Google Scholar]

62. Montes M, Zhang X, Berthelot L, et al. Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th27 cells. Clinical Immunology. 2009;130(2):133–144. [PMC free article] [PubMed] [Google Scholar]

63. Friese MA, Fugger L. Pathogenic CD8+ T cells in multiple sclerosis. Annals of Neurology. 2009;66(2):132–141. [PubMed] [Google Scholar]

64. McDole J, Johnson AJ, Pirko I. The role of CD8+ T-cells in lesion formation and axonal dysfunction in multiple sclerosis. Neurological Research. 2006;28(3):256–261. [PubMed] [Google Scholar]

65. Melzer N, Meuth SG, Wiendl H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. The FASEB Journal. 2009;23(11):3659–3673. [PubMed] [Google Scholar]

66. Malmeström C, Lycke J, Haghighi S, et al. Relapses in multiple sclerosis are associated with increased CD8+ T-cell mediated cytotoxicity in CSF. Journal of Neuroimmunology. 2008;196(1-2):159–165. [PubMed] [Google Scholar]

67. van Oosten BW, Lai M, Hodgkinson S, et al. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR- monitored phase II trial. Neurology. 1997;49(2):351–357. [PubMed] [Google Scholar]

68. Moreau T, Coles A, Wing M, et al. CAMPATH-IH in multiple sclerosis. Multiple Sclerosis. 1996;1(6):357–365. [PubMed] [Google Scholar]

69. Jacobsen M, Cepok S, Quak E, et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain. 2002;125(3):538–550. [PubMed] [Google Scholar]

70. Junker A, Ivanidze J, Malotka J, et al. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain. 2007;130(11):2789–2799. [PubMed] [Google Scholar]

71. Skulina C, Schmidt S, Dornmair K, et al. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(8):2428–2433. [PMC free article] [PubMed] [Google Scholar]

72. Richert JR, Robinson ED, Deibler GE, Martenson RE, Dragovic LJ, Kies MW. Human cytotoxic T-cell recognition of a synthetic peptide of myelin basic protein. Annals of Neurology. 1989;26(3):342–346. [PubMed] [Google Scholar]

73. Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. American Journal of Pathology. 2008;172(1):146–155. [PMC free article] [PubMed] [Google Scholar]

74. Buckle GJ, Höllsberg P, Hafler DA. Activated CD8+ T cells in secondary progressive MS secrete lymphotoxin. Neurology. 2003;60(4):702–705. [PubMed] [Google Scholar]

75. Correale J, Villa A. Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis. Annals of Neurology. 2010;67(5):625–638. [PubMed] [Google Scholar]

76. Hinson SR, Pittock SJ, Lucchinetti CF, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology. 2007;69(24):2221–2231. [PubMed] [Google Scholar]

77. Hinson SR, Roemer SF, Lucchinetti CF, et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down- regulating EAAT2. Journal of Experimental Medicine. 2008;205(11):2473–2481. [PMC free article] [PubMed] [Google Scholar]

78. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. Journal of Experimental Medicine. 2005;202(4):473–477. [PMC free article] [PubMed] [Google Scholar]

79. Lucchinetti CF, Mandler RN, McGavern D, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain. 2002;125(7):1450–1461. [PMC free article] [PubMed] [Google Scholar]

80. Roemer SF, Parisi JE, Lennon VA, et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain. 2007;130(5):1194–1205. [PubMed] [Google Scholar]

81. Bonnan M, Valentino R, Bonnan M, Mehdaoui H, Smadja D, Cabre P. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Multiple Sclerosis. 2009;15(4):487–492. [PubMed] [Google Scholar]

82. Weinstock-Guttman B, Ramanathan M, Lincoff N, et al. Study of mitoxantrone for the treatment of recurrent neuromyelitis optica (Devic disease) Archives of Neurology. 2006;63(7):957–963. [PubMed] [Google Scholar]

83. Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Archives of Neurology. 2009;66(9):1128–1133. [PubMed] [Google Scholar]

84. Cree BAC, Lamb S, Morgan K, Chen A, Waubant E, Genain C. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005;64(7):1270–1272. [PubMed] [Google Scholar]

85. De Parratt J, Prineas JW. Neuromyelitis optica: a demyelinating disease characterized by acute destruction and regeneration of perivascular astrocytes. Multiple Sclerosis. 2010;16(10):1156–1172. [PubMed] [Google Scholar]

86. Takano R, Misu T, Takahashi T, Sato S, Fujihara K, Itoyama Y. Astrocytic damage is far more severe than demyelination in NMO: a clinical CSF biomarker study. Neurology. 2010;75(3):208–216. [PubMed] [Google Scholar]

87. Lipton HL, Dal Canto MC. Theiler’s virus induced demyelination: prevention by immunosuppression. Science. 1976;192(4234):62–64. [PubMed] [Google Scholar]

88. Dal Canto MC, Lipton HL. Multiple sclerosis. Animal model: Theiler’s virus infection in mice. American Journal of Pathology. 1977;88(2):497–500. [PMC free article] [PubMed] [Google Scholar]

89. Lipton HL. Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infection and Immunity. 1975;11(5):1147–1155. [PMC free article] [PubMed] [Google Scholar]

90. Rodriguez M, Oleszak E, Leibowitz J. Theiler’s murine encephalomyelitis: a model of demyelination and persistence of virus. Critical Reviews in Immunology. 1987;7(4):325–365. [PubMed] [Google Scholar]

91. Miller SD, Vanderlugt CL, Begolka WS, et al. Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nature Medicine. 1997;3(10):1133–1136. [PubMed] [Google Scholar]

92. Rodriguez M, Leibowitz JL, Lampert PW. Persistent infection of oligodendrocytes in Theiler’s virus-induced encephalomyelitis. Annals of Neurology. 1983;13(4):426–433. [PubMed] [Google Scholar]

93. Atkins GJ, Sheahan BJ, Dimmock NJ. Semliki Forest virus infection of mice: a model for genetic and molecular analysis of viral pathogenicity. Journal of General Virology. 1985;66, part 3:395–408. [PubMed] [Google Scholar]

94. Griffin MD, Lutz WH, Phan VA, Bachman LA, McKean DJ, Kumar R. Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochemical and Biophysical Research Communications. 2000;270(3):701–708. [PubMed] [Google Scholar]

95. Bailey RE. Diagnosis and treatment of infectious mononucleosis. American Family Physician. 1994;49(4):879–885. [PubMed] [Google Scholar]

96. Jenson HB. Virologic diagnosis, viral monitoring, and treatment of Epstein-Barr virus infectious mononucleosis. Current Infectious Disease Reports. 2004;6(3):200–207. [PubMed] [Google Scholar]

97. Cepok S, Zhou D, Srivastava R, et al. Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. Journal of Clinical Investigation. 2005;115(5):1352–1360. [PMC free article] [PubMed] [Google Scholar]

98. Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. Plos ONE. 2010;5(9):1–5. Article ID e12496. [PMC free article] [PubMed] [Google Scholar]

99. Thacker EL, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Annals of Neurology. 2006;59(3):499–503. [PubMed] [Google Scholar]

100. Ramagopalan SV, Handel AE, Giovannoni G, Siegel SR, Ebers GC, Chaplin G. Relationship of UV exposure to prevalence of multiple sclerosis in England. Neurology. 2011;76(16):1410–1414. [PMC free article] [PubMed] [Google Scholar]

101. Goldacre MJ, Wotton CJ, Seagroatt V, Yeates D. Multiple sclerosis after infectious mononucleosis: record linkage study. Journal of Epidemiology and Community Health. 2004;58(12):1032–1035. [PMC free article] [PubMed] [Google Scholar]

102. Nielsen TR, Rostgaard K, Nielsen NM, et al. Multiple sclerosis after infectious mononucleosis. Archives of Neurology. 2007;64(1):72–75. [PubMed] [Google Scholar]

103. Ebers GC, Sadovnick AD. The geographic distribution of multiple sclerosis: a review. Neuroepidemiology. 1993;12(1):1–5. [PubMed] [Google Scholar]

104. Poser CM, Benedikz J, Hibberd PL. The epidemiology of multiple sclerosis: the Iceland model. Onset-adjusted prevalence rate and other methodological considerations. Journal of the Neurological Sciences. 1992;111(2):143–152. [PubMed] [Google Scholar]

105. Rosen LN, Livingstone IR, Rosenthal NE. Multiple sclerosis and latitude: a new perspective on an old association. Medical Hypotheses. 1991;36(4):376–378. [PubMed] [Google Scholar]

106. Cantorna MT. Vitamin D and autoimmunity: is vitamin D status an environmental factor affecting autoimmune disease prevalence? Proceedings of the Society for Experimental Biology and Medicine. 2000;223(3):230–233. [PubMed] [Google Scholar]

107. Cantorna MT. Vitamin D and multiple sclerosis: an update. Nutrition Reviews. 2008;66(supplement 2):S135–S138. [PMC free article] [PubMed] [Google Scholar]

108. VanAmerongen BM, Dijkstra CD, Lips P, Polman CH. Multiple sclerosis and vitamin D: an update. European Journal of Clinical Nutrition. 2004;58(8):1095–1109. [PubMed] [Google Scholar]

109. Goswami R, Marwaha RK, Gupta N, et al. Prevalence of vitamin D deficiency and its relationship with thyroid autoimmunity in Asian Indians: a community-based survey. British Journal of Nutrition. 2009;102(3):382–386. [PubMed] [Google Scholar]

110. Grant WB, Cross HS, Garland CF, et al. Estimated benefit of increased vitamin D status in reducing the economic burden of disease in western Europe. Progress in Biophysics and Molecular Biology. 2009;99(2-3):104–113. [PubMed] [Google Scholar]

111. Kragt JJ, van Amerongen BM, Killestein J, et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Multiple Sclerosis. 2009;15(1):9–15. [PubMed] [Google Scholar]

112. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. Journal of the American Medical Association. 2006;296(23):2832–2838. [PubMed] [Google Scholar]

113. Orton SM, Morris AP, Herrera BM, et al. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. American Journal of Clinical Nutrition. 2008;88(2):441–447. [PMC free article] [PubMed] [Google Scholar]

114. Raghuwanshi A, Joshi SS, Christakos S. Vitamin D and multiple sclerosis. Journal of Cellular Biochemistry. 2008;105(2):338–343. [PMC free article] [PubMed] [Google Scholar]

115. Smolders J, Damoiseaux J, Menheere P, Tervaert JWC, Hupperts R. Association study on two vitamin D receptor gene polymorphisms and vitamin D metabolites in multiple sclerosis. Annals of the New York Academy of Sciences. 2009;1173:515–520. [PubMed] [Google Scholar]

116. Smolders J, Damoiseaux J, Menheere P, Tervaert JWC, Hupperts R. Fok-I vitamin D receptor gene polymorphism (rs10735810) and vitamin D metabolism in multiple sclerosis. Journal of Neuroimmunology. 2009;207(1-2):117–121. [PubMed] [Google Scholar]

117. Smolders J, Peelen E, Thewissen M, et al. The relevance of vitamin D receptor gene polymorphisms for vitamin D research in multiple sclerosis. Autoimmunity Reviews. 2009;8(7):621–626. [PubMed] [Google Scholar]

118. Smolders J, Thewissen M, Peelen E, et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. Plos ONE. 2009;4(8) Article ID e6635. [PMC free article] [PubMed] [Google Scholar]

119. Soilu-Hanninen M, Laaksonen M, Laitinen I, Eralinna JP, Lilius EM, Mononen I. A longitudinal study of serum 25-hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of vitamin D and calcium homeostasis regulation in multiple sclerosis. Journal of Neurol Neurosurg Psychiatry. 2008;79(2):152–157. [PubMed] [Google Scholar]

120. van der Mei IAF, Ponsonby AL, Dwyer T, et al. Vitamin D levels in people with multiple sclerosis and community controls in Tasmania, Australia. Journal of Neurology. 2007;254(5):581–590. [PubMed] [Google Scholar]

121. Craig TA, Sommer S, Sussman CR, Grande JP, Kumar R. Expression and regulation of the vitamin D receptor in the zebrafish, Danio rerio. Journal of Bone and Mineral Research. 2008;23(9):1486–1496. [PMC free article] [PubMed] [Google Scholar]

122. Gross M, Kumar R. Physiology and biochemistry of vitamin D-dependent calcium binding proteins. American Journal of Physiology. 1990;259(2):F195–F209. [PubMed] [Google Scholar]

123. Haussler MR, Haussler CA, Bartik L, et al. Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. Nutrition Reviews. 2008;66(2):S98–S112. [PubMed] [Google Scholar]

124. Johnson JA, Kumar R. Renal and intestinal calcium transport: roles of vitamin D and vitamin D-dependent calcium binding proteins. Seminars in Nephrology. 1994;14(2):119–128. [PubMed] [Google Scholar]

125. Jurutka PW, Bartik L, Whitfield GK, et al. Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. Journal of Bone and Mineral Research. 2007;22(supplement 2):V2–V10. [PubMed] [Google Scholar]

126. Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA, Haussler MR. Molecular nature of the vitamin D receptor and its role in regulation of gene expression. Reviews in Endocrine & Metabolic Disorders. 2001;2(supplement 2):203–216. [PubMed] [Google Scholar]

127. Kumar A. Metabolism of 1,25-dihydroxyvitamin D3. Physiological Reviews. 1984;64(2):478–504. [PubMed] [Google Scholar]

128. Veenstra TD, Prüfer K, Koenigsberger C, Brimijoin SW, Grande JP, Kumar R. 1,25-dihydroxyvitamin D3 receptors in the central nervous system of the rat embryo. Brain Research. 1998;804(2):193–205. [PubMed] [Google Scholar]

129. Dong X, Lutz W, Schroeder TM, et al. Regulation of relB in dendritic cells by means of modulated association of vitamin D receptor and histone deacetylase 3 with the promoter. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(44):16007–16012. [PMC free article] [PubMed] [Google Scholar]

130. Griffin MD, Dong X, Kumar R. Vitamin D receptor-mediated suppression of RelB in antigen presenting cells: a paradigm for ligand-augmented negative transcriptional regulation. Archives of Biochemistry and Biophysics. 2007;460(2):218–226. [PMC free article] [PubMed] [Google Scholar]

131. Griffin MD, Kumar R. Effects of 1α,25(OH)2D3 and its analogs on dendritic cell function. Journal of Cellular Biochemistry. 2003;88(2):323–326. [PubMed] [Google Scholar]

132. Griffin MD, Kumar R. Multiple potential clinical benefits for 1alpha,25-dihydroxyvitamin D3 analogs in kidney transplant recipients. The Journal of Steroid Biochemistry and Molecular Biology. 2005;97(1-2):213–218. [PubMed] [Google Scholar]

133. Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R. Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo . Proceedings of the National Academy of Sciences of the United States of America. 2001;98(12):6800–6805. [PMC free article] [PubMed] [Google Scholar]

134. Xing. N, Maldonadoa ML, Bachmana LA, McKeanb DJ, Kumara R, Griffin MD. Distinctive dendritic cell modulation by vitamin D(3) and glucocorticoid pathways. Biochemical and Biophysical Research Communications. 2002;297(3):645–652. [PubMed] [Google Scholar]

135. Cannell JJ, Zasloff M, Garland CF, Scragg R, Giovannucci E. On the epidemiology of influenza. Virology Journal. 2008;5, article 29 [PMC free article] [PubMed] [Google Scholar]

136. Grant WB. Latitude and multiple sclerosis prevalence: vitamin D reduces risk of Epstein-Barr virus infection. Multiple Sclerosis Journal. 2010;16(3):p. 373. [PubMed] [Google Scholar]

137. Warrington AE, Asakura K, Bieber AJ, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(12):6820–6825. [PMC free article] [PubMed] [Google Scholar]

138. Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M. A recombinant human IgM promotes myelin repair after a single, very low dose. Journal of Neuroscience Research. 2007;85(5):967–976. [PubMed] [Google Scholar]

139. Warrington AE, Bieber AJ, Van Keulen V, Ciric B, Pease LR, Rodriguez M. Neuron-binding human monoclonal antibodies support central nervous system neurite extension. Journal of Neuropathology and Experimental Neurology. 2004;63(5):461–473. [PubMed] [Google Scholar]

140. Watzlawik J, Holicky E, Edberg DD, et al. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. GLIA. 2010;58(15):1782–1793. [PMC free article] [PubMed] [Google Scholar]

What type of immune disorder is multiple sclerosis?

It's considered an autoimmune disease in which the body's immune system attacks its own tissues. In the case of MS , this immune system malfunction destroys the fatty substance that coats and protects nerve fibers in the brain and spinal cord (myelin).

What do rheumatoid arthritis and multiple sclerosis have in common?

Is multiple sclerosis related to rheumatoid arthritis? Multiple sclerosis and rheumatoid arthritis are both autoimmune diseases. They result when your immune system malfunctions and attacks healthy tissues. It is possible to have more than one autoimmune disease, so MS and RA can coexist.
Patients with MS had a higher incidence of rheumatoid arthritis (age-adjusted standardized incidence ratio: 1.72; 95% confidence interval = 1.01–2.91). There was a positive correlation in being diagnosed with rheumatoid arthritis in patients previously diagnosed with MS when stratified by sex and age.

What type of autoimmune disease is rheumatoid arthritis?

Rheumatoid arthritis, or RA, is an autoimmune and inflammatory disease, which means that your immune system attacks healthy cells in your body by mistake, causing inflammation (painful swelling) in the affected parts of the body. RA mainly attacks the joints, usually many joints at once.