Reverse transcriptase is rna dependent dna polymerase

  • Temin HM, Mizutani S: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970, 226 (5252): 1211-3.

    CAS  Article  PubMed  Google Scholar 

  • Baltimore D: RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970, 226 (5252): 1209-11.

    CAS  Article  PubMed  Google Scholar 

  • Mizutani S, Boettiger D, Temin HM: A DNA-depenent DNA polymerase and a DNA endonuclease in virions of Rous sarcoma virus. Nature. 1970, 228 (5270): 424-7.

    CAS  Article  PubMed  Google Scholar 

  • Taylor JM, Faras AJ, Varmus HE, Levinson WE, Bishop JM: Ribonucleic acid directed deoxyribonucleic acid synthesis by the purified deoxyribonucleic acid polymerase of Rous sarcoma virus. Characterization of the enzymatic product. Biochemistry. 1972, 11 (12): 2343-51.

    CAS  Article  PubMed  Google Scholar 

  • Faras AJ, Taylor JM, McDonnell JP, Levinson WE, Bishop JM: Purification and characterization of the deoxyribonucleic acid polymerase associated with Rous sarcoma virus. Biochemistry. 1972, 11 (12): 2334-42.

    CAS  Article  PubMed  Google Scholar 

  • Rothenberg E, Smotkin D, Baltimore D, Weinberg RA: In vitro synthesis of infectious DNA of murine leukaemia virus. Nature. 1977, 269 (5624): 122-6.

    CAS  Article  PubMed  Google Scholar 

  • Schlom J, Spiegelman S, Moore D: RNA-dependent DNA polymerase activity in virus-like particles isolated from human milk. Nature. 1971, 231 (5298): 97-100.

    CAS  Article  PubMed  Google Scholar 

  • Schlom J, Spiegelman S: Simultaneous detection of reverse transcriptase and high molecular weight RNA unique to oncogenic RNA viruses. Science. 1971, 174 (11): 840-3.

    CAS  Article  PubMed  Google Scholar 

  • Mölling K, Bolognesi DP, Bauer H, Büsen W, Plassmann HW, Hausen P: Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. Nat New Biol. 1971, 234 (51): 240-3.

    Article  PubMed  Google Scholar 

  • Darlix JL, Bromley PA, Spahr PF: New procedure for the direct analysis of in vitro reverse transcription of Rous sarcoma virus RNA. J Virol. 1977, 22 (1): 118-29.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gilboa E, Mitra SW, Goff S, Baltimore D: A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979, 18 (1): 93-100.

    CAS  Article  PubMed  Google Scholar 

  • Coffin JM: Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol. 1979, 42 (1): 1-26.

    CAS  Article  PubMed  Google Scholar 

  • Goff S, Traktman P, Baltimore D: Isolation and properties of Moloney murine leukemia virus mutants: use of a rapid assay for release of virion reverse transcriptase. J Virol. 1981, 38 (1): 239-48.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Temin HM: Sex and recombination in retroviruses. Trends Genet. 1991, 7 (3): 71-4.

    CAS  Article  PubMed  Google Scholar 

  • Jacobo-Molina A, Arnold E: HIV reverse transcriptase structure-function relationships. Biochemistry. 1991, 30 (26): 6351-6.

    CAS  Article  PubMed  Google Scholar 

  • Rodgers DW, Gamblin SJ, Harris BA, Ray S, Culp JS, Hellmig B, Woolf DJ, Debouck C, Harrison SC: The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1995, 92 (4): 1222-6.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Ding J, Das K, Hsiou Y, Sarafianos SG, Clark AD, Jacobo-Molina A, Tantillo C, Hughes SH, Arnold E: Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. J Mol Biol. 1998, 284 (4): 1095-111.

    CAS  Article  PubMed  Google Scholar 

  • Liu S, Abbondanzieri EA, Rausch JW, Le Grice SF, Zhuang X: Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science. 2008, 322 (5904): 1092-7.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X: Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature. 2008, 453 (7192): 184-9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Prats AC, Sarih L, Gabus C, Litvak S, Keith G, Darlix JL: Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. EMBO J. 1988, 7 (6): 1777-83.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barat C, Lullien V, Schatz O, Keith G, Nugeyre MT, Grüninger-Leitch F, Barré-Sinoussi F, LeGrice SF, Darlix JL: HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO J. 1989, 8 (11): 3279-85.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allain B, Lapadat-Tapolsky M, Berlioz C, Darlix J-LL: Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J. 1994, 13 (4): 973-81.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuchihashi Z, Brown PO: DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J Virol. 1994, 68 (9): 5863-70.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo J, Henderson LE, Bess J, Kane B, Levin JG: Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA. J Virol. 1997, 71 (7): 5178-88.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo J, Wu T, Anderson J, Kane BF, Johnson DG, Gorelick RJ, Henderson LE, Levin JG: Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. J Virol. 2000, 74 (19): 8980-8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Yu Q, Darlix J-L: The zinc finger of nucleocapsid protein of Friend murine leukemia virus is critical for proviral DNA synthesis in vivo. J Virol. 1996, 70 (9): 5791-8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gonsky J, Bacharach E, Goff SP: Identification of residues of the Moloney murine leukemia virus nucleocapsid critical for viral DNA synthesis in vivo. J Virol. 2001, 75 (6): 2616-26.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Darlix JL, Lapadat-Tapolsky M, de Rocquigny H, Roques BP: First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995, 254 (4): 523-37.

    CAS  Article  PubMed  Google Scholar 

  • Méric C, Goff SP: Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in the Cys-His box of the nucleocapsid protein. J Virol. 1989, 63 (4): 1558-68.

    PubMed Central  PubMed  Google Scholar 

  • Rein A, Harvin DP, Mirro J, Ernst SM, Gorelick RJ: Evidence that a central domain of nucleocapsid protein is required for RNA packaging in murine leukemia virus. J Virol. 1994, 68 (9): 6124-9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Qian H, Love Z, Barklis E: Analysis of the assembly function of the human immunodeficiency virus type 1 gag protein nucleocapsid domain. J Virol. 1998, 72 (3): 1782-9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feng YX, Copeland TD, Henderson LE, Gorelick RJ, Bosche WJ, Levin JG, Rein A: HIV-1 nucleocapsid protein induces "maturation" of dimeric retroviral RNA in vitro. Proc Natl Acad Sci USA. 1996, 93 (15): 7577-81.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Fossé P, Motté N, Roumier A, Gabus C, Muriaux D, Darlix J-L, Paoletti J: A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization. Biochemistry. 1996, 35 (51): 16601-9.

    Article  PubMed  Google Scholar 

  • Darlix J-L, Gabus C, Allain B: Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro. J Virol. 1992, 66 (12): 7245-52.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rein A, Henderson LE, Levin JG: Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci. 1998, 23 (8): 297-301.

    CAS  Article  PubMed  Google Scholar 

  • Cristofari G, Darlix J-L: The ubiquitous nature of RNA chaperone proteins. Prog Nucleic Acid Res Mol Biol. 2002, 72: 223-68.

    CAS  Article  PubMed  Google Scholar 

  • Levin JG, Guo J, Rouzina I, Musier-Forsyth K: Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog Nucleic Acid Res Mol Biol. 2005, 80: 217-86.

    CAS  Article  PubMed  Google Scholar 

  • Thomas JA, Gorelick RJ: Nucleocapsid protein function in early infection processes. Virus Res. 2008, 134 (1–2): 39-63.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW, Sowder RC, Barsov E, Hood BL, Fisher RJ, Nagashima K, Conrads TP, Veenstra TD, Lifson JD, Ott DE: Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006, 80 (18): 9039-52.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Roda RH, Balakrishnan M, Hanson MN, Wohrl BM, Le Grice SF, Roques BP, Gorelick RJ, Bambara RA: Role of the Reverse Transcriptase, Nucleocapsid Protein, and Template Structure in the Two-step Transfer Mechanism in Retroviral Recombination. J Biol Chem. 2003, 278 (34): 31536-46.

    CAS  Article  PubMed  Google Scholar 

  • Lapadat-Tapolsky M, Gabus C, Rau M, Darlix J-L: Possible roles of HIV-1 nucleocapsid protein in the specificity of proviral DNA synthesis and in its variability. J Mol Biol. 1997, 268 (2): 250-60.

    CAS  Article  PubMed  Google Scholar 

  • Lener D, Tanchou V, Roques BP, Le Grice SF, Darlix J-L: Involvement of HIV-I nucleocapsid protein in the recruitment of reverse transcriptase into nucleoprotein complexes formed in vitro. J Biol Chem. 1998, 273 (50): 33781-6.

    CAS  Article  PubMed  Google Scholar 

  • Bampi C, Bibillo A, Wendeler M, Divita G, Gorelick RJ, Le Grice SF, Darlix J-L: Nucleotide excision repair and template-independent addition by HIV-1 reverse transcriptase in the presence of nucleocapsid protein. J Biol Chem. 2006, 281 (17): 11736-43.

    CAS  Article  PubMed  Google Scholar 

  • Grohmann D, Godet J, Mély Y, Darlix JL, Restle T: HIV-1 Nucleocapsid Traps Reverse Transcriptase on Nucleic Acid Substrates. Biochemistry. 2008, 47 (46): 12230-40.

    CAS  Article  PubMed  Google Scholar 

  • Buckman JS, Bosche WJ, Gorelick RJ: Human immunodeficiency virus type 1 nucleocapsid zn(2+) fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA. J Virol. 2003, 77 (2): 1469-80.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Basu VP, Song M, Gao L, Rigby ST, Hanson MN, Bambara RA: Strand transfer events during HIV-1 reverse transcription. Virus Res. 2008, 134 (1–2): 19-38.

    CAS  Article  PubMed  Google Scholar 

  • Fitzon T, Leschonsky B, Bieler K, Paulus C, Schröder J, Wolf H, Wagner R: Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology. 2000, 268 (2): 294-307.

    CAS  Article  PubMed  Google Scholar 

  • Zhang H, Dornadula G, Orenstein J, Pomerantz RJ: Morphologic changes in human immunodeficiency virus type 1 virions secondary to intravirion reverse transcription: evidence indicating that reverse transcription may not take place within the intact viral core. J Hum Virol. 2000, 3 (3): 165-72.

    CAS  PubMed  Google Scholar 

  • Fassati A, Goff SP: Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol. 2001, 75 (8): 3626-35.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Warrilow D, Harrich D: HIV-1 replication from after cell entry to the nuclear periphery. Curr HIV Res. 2007, 5 (3): 293-9.

    CAS  Article  PubMed  Google Scholar 

  • Warrilow D, Stenzel D, Harrich D: Isolated HIV-1 core is active for reverse transcription. Retrovirology. 2007, 4: 77-

    PubMed Central  Article  PubMed  Google Scholar 

  • Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prévost MC, Allen TD, Charneau P: HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J. 2007, 26 (12): 3025-37.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M, Hope TJ: Visualization of the intracellular behavior of HIV in living cells. J Cell Biol. 2002, 159 (3): 441-52.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Brun S, Solignat M, Gay B, Bernard E, Chaloin L, Fenard D, Devaux C, Chazal N, Briant L: VSV-G pseudotyping rescues HIV-1 CA mutations that impair core assembly or stability. Retrovirology. 2008, 5: 57-

    PubMed Central  Article  PubMed  Google Scholar 

  • Cimarelli A, Darlix JL: Assembling the human immunodeficiency virus type 1. Cell Mol Life Sci. 2002, 59 (7): 1166-84.

    CAS  Article  PubMed  Google Scholar 

  • Freed EO: HIV-1 gag proteins: diverse functions in the virus life cycle. Virology. 1998, 251 (1): 1-15.

    CAS  Article  PubMed  Google Scholar 

  • Raposo G, Moore M, Innes D, Leijendekker R, Leigh-Brown A, Benaroch P, Geuze H: Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic. 2002, 3 (10): 718-29.

    CAS  Article  PubMed  Google Scholar 

  • Basyuk E, Galli T, Mougel M, Blanchard JM, Sitbon M, Bertrand E: Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev Cell. 2003, 5 (1): 161-74.

    CAS  Article  PubMed  Google Scholar 

  • Grigorov B, Arcanger F, Roingeard P, Darlix JL, Muriaux D: Assembly of infectious HIV-1 in human epithelial and T-lymphoblastic cell lines. J Mol Biol. 2006, 359 (4): 848-62.

    CAS  Article  PubMed  Google Scholar 

  • Houzet L, Gay B, Morichaud Z, Briant L, Mougel M: Intracellular assembly and budding of the Murine Leukemia Virus in infected cells. Retrovirology. 2006, 3: 12-

    PubMed Central  Article  PubMed  Google Scholar 

  • Houzet L, Paillart JC, Smagulova F, Maurel S, Morichaud Z, Marquet R, Mougel M: HIV controls the selective packaging of genomic, spliced viral and cellular RNAs into virions through different mechanisms. Nucleic Acids Res. 2007, 35 (8): 2695-704.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Lori F, di Marzo Veronese F, de Vico AL, Lusso P, Reitz MS, Gallo RC: Viral DNA carried by human immunodeficiency virus type 1 virions. J Virol. 1992, 66 (8): 5067-74.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trono D: Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J Virol. 1992, 66 (8): 4893-900.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Dornadula G, Pomerantz RJ: Natural endogenous reverse transcription of HIV-1. J Reprod Immunol. 1998, 41 (1–2): 255-60.

    CAS  Article  PubMed  Google Scholar 

  • Borroto-Esoda K, Boone LR: Equine infectious anemia virus and human immunodeficiency virus DNA synthesis in vitro: characterization of the endogenous reverse transcriptase reaction. J Virol. 1991, 65 (4): 1952-9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Dornadula G, Pomerantz RJ: Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenvironments: an important stage for viral infection of nondividing cells. J Virol. 1996, 70 (5): 2809-24.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Münch J, Rücker E, Ständker L, Adermann K, Goffinet C, Schindler M, Wildum S, Chinnadurai R, Rajan D, Specht A, Giménez-Gallego G, Sánchez PC, Fowler DM, Koulov A, Kelly JW, Mothes W, Grivel JC, Margolis L, Keppler OT, Forssmann WG, Kirchhoff F: Semen-derived amyloid fibrils drastically enhance HIV infection. Cell. 2007, 131 (6): 1059-71.

    Article  PubMed  Google Scholar 

  • Roan NR, Münch J, Arhel N, Mothes W, Neidleman J, Kobayashi A, Smith-McCune K, Kirchhoff F, Greene WC: The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. J Virol. 2009, 83 (1): 73-80.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Tanchou V, Decimo D, Péchoux C, Lener D, Rogemond V, Berthoux L, Ottmann M, Darlix JL: Role of the N-terminal zinc finger of human immunodeficiency virus type 1 nucleocapsid protein in virus structure and replication. J Virol. 1998, 72 (5): 4442-7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darlix JL, Garrido JL, Morellet N, Mély Y, de Rocquigny H: Properties, functions, and drug targeting of the multifunctional nucleocapsid protein of the human immunodeficiency virus. Adv Pharmacol. 2007, 55: 299-346.

    CAS  Article  PubMed  Google Scholar 

  • Houzet L, Morichaud Z, Mougel M: Fully-spliced HIV-1 RNAs are reverse transcribed with similar efficiencies as the genomic RNA in virions and cells, but more efficiently in AZT-treated cells. Retrovirology. 2007, 4: 30-

    PubMed Central  Article  PubMed  Google Scholar 

  • Houzet L, Morichaud Z, Didierlaurent L, Muriaux D, Darlix JL, Mougel M: Nucleocapsid mutations turn HIV-1 into a DNA-containing virus. Nucleic Acids Res. 2008, 36 (7): 2311-93.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Didierlaurent L, Houzet L, Morichaud Z, Darlix JL, Mougel M: The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation. Nucleic Acids Res. 2008, 36 (14): 4745-53.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Thomas JA, Bosche WJ, Shatzer TL, Johnson DG, Gorelick RJ: Mutations in human immunodeficiency virus type 1 nucleocapsid protein zinc fingers cause premature reverse transcription. J Virol. 2008, 82 (19): 9318-28.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Grigorov B, Décimo D, Smagulova F, Péchoux C, Mougel M, Muriaux D, Darlix JL: Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers. Retrovirology. 2007, 4: 54-

    PubMed Central  Article  PubMed  Google Scholar 

  • Beltz H, Clauss C, Piémont E, Ficheux D, Gorelick RJ, Roques B, Gabus C, Darlix JL, de Rocquigny H, Mély Y: Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis. J Mol Biol. 2005, 348 (5): 1113-26.

    CAS  Article  PubMed  Google Scholar 

  • Bampi C, Jacquenet S, Lener D, Décimo D, Darlix JL: The chaperoning and assistance roles of the HIV-1 nucleocapsid protein in proviral DNA synthesis and maintenance. Curr HIV Res. 2004, 2 (1): 79-92.

    CAS  Article  PubMed  Google Scholar 

  • De Rocquigny H, Gabus C, Vincent A, Fournié-Zaluski MC, Roques B, Darlix JL: Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. Proc Natl Acad Sci USA. 1992, 89 (14): 6472-6.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Carteau S, Batson SC, Poljak L, Mouscadet JF, de Rocquigny H, Darlix JL, Roques BP, Käs E, Auclair C: Human immunodeficiency virus type 1 nucleocapsid protein specifically stimulates Mg2+-dependent DNA integration in vitro. J Virol. 1997, 71 (8): 6225-9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carteau S, Gorelick RJ, Bushman FD: Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J Virol. 1999, 73 (8): 6670-9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Q, Ottmann M, Pechoux C, Le Grice S, Darlix JL: Mutations in the primer grip of human immunodeficiency virus type 1 reverse transcriptase impair proviral DNA synthesis and virion maturation. J Virol. 1998, 72 (9): 7676-80.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams MC, Rouzina I, Wenner JR, Gorelick RJ, Musier-Forsyth K, Bloomfield VA: Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching. Proc Natl Acad Sci USA. 2001, 98 (11): 6121-6.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • de Rocquigny H, Shvadchak V, Avilov S, Dong CZ, Dietrich U, Darlix JL, Mély Y: Targeting the viral nucleocapsid protein in anti-HIV-1 therapy. Mini Rev Med Chem. 2008, 8 (1): 24-35.

    CAS  Article  PubMed  Google Scholar 

  • Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML: Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science. 1996, 271 (5255): 1579-82.

    CAS  Article  PubMed  Google Scholar 

  • Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, McClure MO, Rethwilm A: Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol. 1997, 71 (10): 7305-11.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu SF, Sullivan MD, Linial ML: Evidence that the human foamy virus genome is DNA. J Virol. 1999, 73 (2): 1565-72.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gabus C, Ivanyi-Nagy R, Depollier J, Bucheton A, Pelisson A, Darlix JL: Characterization of a nucleocapsid-like region and of two distinct primer tRNALys,2 binding sites in the endogenous retrovirus Gypsy. Nucleic Acids Res. 2006, 34 (20): 5764-77.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Volff JN, Brosius J: Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. Genome Dyn. 2007, 3: 175-90.

    CAS  Article  PubMed  Google Scholar 

  • Goodier JL, Kazazian HH: Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 2008, 135 (1): 23-35.

    CAS  Article  PubMed  Google Scholar 

  • Dolberg D, Fan H: Further characterization of virus-like 30S (VL30) RNA of mice: initiation of reverse transcription and intracellular synthesis. J Gen Virol. 1981, 54 (Pt 2): 281-91.

    CAS  Article  PubMed  Google Scholar 

  • Ribet D, Harper F, Esnault C, Pierron G, Heidmann T: The GLN family of murine endogenous retroviruses contains an element competent for infectious viral particle formation. J Virol. 2008, 82 (9): 4413-9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Lee YN, Bieniasz PD: Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog. 2007, 3 (1): e10-

    PubMed Central  Article  PubMed  Google Scholar 

  • Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G: Heidmann T3 Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 2006, 16 (12): 1548-56.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Beauregard A, Curcio MJ, Belfort M: The Take and Give Between Retrotransposable Elements and their Hosts. Annu Rev Genet. 2008, 42: 587-617.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F, Giusti F, Dosik MH, Hayes DF, Gitlin SD, Markovitz DM: Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol. 2008, 82 (19): 9329-36.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Ejtehadi HD, Freimanis GL, Ali HA, Bowman S, Alavi A, Axford J, Callaghan R, Nelson PN: The potential role of human endogenous retrovirus K10 in the pathogenesis of rheumatoid arthritis: a preliminary study. Ann Rheum Dis. 2006, 65 (5): 612-6.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Molès JP, Tesniere A, Guilhou JJ: A new endogenous retroviral sequence is expressed in skin of patients with psoriasis. Br J Dermatol. 2005, 153 (1): 83-9.

    Article  PubMed  Google Scholar 

  • Han Y, Wang X, Dang Y, Zheng YH: APOBEC3G and APOBEC3F require an endogenous cofactor to block HIV-1 replication. PLoS Pathog. 2008, 4 (7): e1000095-

    PubMed Central  Article  PubMed  Google Scholar 

  • Goila-Gaur R, Strebel K: HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology. 2008, 5: 51-

    PubMed Central  Article  PubMed  Google Scholar 

  • Geuking MB, Weber J, Dewannieux M, Gorelik E, Heidmann T, Hengartner H, Zinkernagel RM, Hangartner L: Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science. 2009, 323 (5912): 393-6.

    CAS  Article  PubMed  Google Scholar 

  • Who is DNA

    The DNA-dependent RNA polymerase (DdRP or RNAP) is an essential enzyme of transcription of replicating systems of prokaryotic and eukaryotic organisms as well as cytoplasmic DNA viruses.

    What is DNA

    DNA-dependent DNA polymerases are responsible for directing the synthesis of new DNA from deoxyribonucleotide triphosphates (dNTPs) opposite an existing DNA template, which contains the genetic information critical to an organism's survival.

    Which enzyme is RNA dependent polymerase?

    Reverse transcriptases (RNA-dependent DNA polymerases) have five conserved sequence motifs, four of which can be aligned with those from RNA-dependent RNA polymerases.

    What is RNA dependent DNA synthesis?

    First, RNA-dependent DNA polymerase synthesizes a DNA strand complementary to the RNA template. Then RNase H removes the RNA strand from the RNA–DNA hybrid double helix. Then the DNA-dependent DNA polymerase completes double-stranded DNA synthesis.